

MICROCONTROLLERS Nov 30, 2004

Using a Keypad and LCD Display with the
MAXQ2000

Embedded systems which require user interaction must interface with devices
that accept user input (such as a keypad, bar code reader or smart card
acceptor) as well as devices that display information to the user (such as LED
or LCD displays). This application note, using the MAXQ2000 microcontroller,
covers the use of two such typical devices - a 4x4 switch keypad and an LCD
display.

Overview
Embedded systems which require user interaction must interface with devices that accept user input
(such as a keypad, bar code reader, or smart card acceptor), as well as devices that display
information to the user (such as LED or LCD displays). This application note covers the use of two
such typical devices, a 4 x 4 switch keypad and an LCD display, with the MAXQ2000
microcontroller.

All example code for this application note was written in MAXQ assembly language, using the MAX-
IDE development environment. The code was targeted for the MAXQ2000 Evaluation Kit (EV kit)
board, using the following additional hardware.

● LCD—Varitronix static 3-volt LCD display, part number VI-502 (included with the MAXQ2000
EV Kit)

● Keypad—Grayhill 16-button (4 rows by 4 columns) keypad, part number 96BB2-006-F

Design Goals
Our example application will demonstrate basic use of both the keypad and LCD display by
accepting input from the keypad and displaying the characters entered on the LCD. The application
will handle switch debouncing correctly to avoid registering multiple characters from a single
keypress, and it will also allow characters to be deleted once input. As a final task, contrast
adjustment of the LCD display will be supported by the keypad.

As with any embedded design, the application should attempt to utilize the resources of the
MAXQ2000 efficiently.

● Interrupt routines should use as little stack space as possible.
● Working register usage should be kept to a minimum.

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en

Interfacing to the 4x4 Keypad
The keypad used for this example application consists of 16 switches, organized in a 4 x 4 grid.
(Figure 1.)

Figure 1. Keypad Switch Layout

The switches are tied together in a row and column matrix as shown below in Figure 2. Depressing
a keypad switch connects one row line to one column line. For example, depressing the "3" key
connects row 1 and column 3 together.

Figure 2. Keypad Row/Column Matrix

The keypad provides eight interface pins, one pin for each row and column of the keypad matrix. To
allow use of a single, eight-connector cable to run from the keypad to the MAXQ2000 EV Kit, we will
connect the keypad to port pins P6[5:0] and P7[1:0] through the JU2 header pin connector on the
evaluation kit board, as shown below in Table 1. For a custom design, the keypad could be
connected to the microcontroller in the most efficient method possible.

Table 1. Port Pin Connections to Keypad Row and Column Lines

Pin 1 2 3 4 5 6 7 8

Connect Row 1 Row 2 Row 3 Row 4 Col 1 Col 2 Col 3 Col 4

Port Pin P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P7.0 P7.1

JU2 Pin 54 52 50 48 46 44 42 40

When connecting the keypad to the EV kit board for this example, the board should be configured
as follows:

● These DIP switches must be OFF—All SW1 switches, SW3.1, SW3.7, SW3.8, SW6.1, SW6.4,
SW6.5, SW6.6, SW6.7, and SW6.8.

● OPEN jumpers JU5, JU6, JU8, and JU9.

Optionally, when running the example application without modification, all the DIP switches may be
turned off to simplify setup; only jumpers JU1, JU2, JU3 and JU11 need to be connected.

Scanning by Columns
With the row and column arrangement of the keypad, it is possible to read the state of four of the
switches at any one time. This can be done on either a per row or per column basis.

To read four switches in one column, the line for that column must be pulled low, and all other
columns tristated. Next, a weak pull-up must be established on each row line. Finally, connect the
four row lines to port pin inputs. Defaulting to a HIGH state, the row input transitions low when the
switch for that row is depressed. (Figure 3.)

Figure 3. Keypad Setup to Read Column 1 Switches

Similarly, the state of four switches in a row may be read by pulling that row line low and setting
inputs and weak pullups on all four columns. The rows and columns are interchangeable.

In our setup (Table 2), the four row lines (keypad pins 1 through 4) are all connected to the same
input port (P6[3:0]), which makes it easier to read them all at once. For this reason, the example
application will scan the keypad by columns, not by rows.

There are four setup states for the eight port-pin lines connected to the keypad, each of which
allows four of the switches to be read. All input lines read LOW when the switch being read is
closed, and HIGH when the switch is open.

Table 2. Port Pin Settings for Keypad Column Read States

State P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P7.0 P7.1

1 Input - 1 Input - 4 Input - 7 Input - * LOW Tristate Tristate Tristate

2 Input - 2 Input - 5 Input - 8 Input - 0 Tristate LOW Tristate Tristate

3 Input - 3 Input - 6 Input - 9 Input - # Tristate Tristate LOW Tristate

4 Input - A Input - B Input - C Input - D Tristate Tristate Tristate LOW

An Interrupt-Driven State Machine
To ensure that a keypress is not missed, the four columns must be strobed quickly. Additionally, to
prevent the bouncing contacts of a switch from registering multiple presses, the application requires
that a key be held down for a certain amount of time before it registers. Both of these problems can
be solved at once, by making a timer-driven interrupt routine the heart of the application.

RELOAD equ 0FF00h

StartTimer:
 move IIR.3, #1 ; Enable interrupts for module 3
 move IMR.3, #1

 move T2V0, #RELOAD
 move T2R0, #0h
 move T2C0, #0h

 move Acc, T2CFG0 ; Set timer 0 to run from HFClk/128
 and #08Fh
 or #070h
 move T2CFG0, Acc

 move T2CNA0.3, #1 ; Start timer 0
 move T2CNA0.7, #1 ; Enable timer 0 interrupts
 ret

The reload value for the timer, which controls how often the interrupt will fire, should be short
enough that all key presses are caught and that key response is not noticeably sluggish. The reload
value also should be long enough that it does not occupy an excessive amount of processing time.
The value 0FF00h shown above (once about every 2.4 ms) was arrived at through experimentation.

Once the column line for a group of four switches is driven LOW, a certain amount of time may be
required for the connection through a depressed switch to pull its input line low. This time will be
affected by the on-resistance of the switch and by how many switches on the column are depressed
at once. To avoid having to delay in the interrupt service routine between pulling the column line low
and reading the four switches, the column line for a given state will be driven LOW in the previous
state, as shown in Figure 4.

Figure 4. Keypad Read-State Machine

Because the interrupt vector (IV) for the MAXQ2000 can be set on-the-fly, it is possible to hold the
next-state value in the interrupt vector register by having the handler routine for each state set the
vector address to the next state's handler routine.

org 0000h

Main:
 call InitializeLCD

 move PD6, #010h ; For state 1
 move PO6, #00Fh ; For all states
 move PD7, #000h ; For state 1
 move PO7, #000h ; For all states

 move IV, #State1
 call StartTimer
 move IC, #1 ; Enable global interrupts

 jump $

State1:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab lowest four bits only
 sla4
 move A[13], Acc

 move PD6, #020h ; For state 2
 move PD7, #000h

 move T2V0, #RELOAD ; Set reload value
 move T2CNB0.1, #0 ; Clear interrupt flags
 move T2CNB0.3, #0
 move IV, #State2

 pop Acc
 pop PSF

 reti

The handler routines for the other four states are similar, with a slight adjustment to OR in the
previously collected switch bits in the A[13] holding register. Three working accumulators are used
by the state routines.

A[13] holds the bit array of all the switch states read on the current pass through the keypad. After
the State 4 read has completed, this register will contain the following bits, where a 1 bit represents
an open (released) key switch and a 0 bit represents a closed (depressed) key switch.

bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

* 7 4 1 2 5 8 0 3 6 9 # D C B A

A[14] holds the bit array from the previous pass through the state machine. This is used by the
debouncing code.

A[15] holds the last bit pattern which was held long enough to be registered as a key press. This is
used to prevent key presses from repeating.

Debouncing Switches
After State 4 has been reached and all keys have been scanned, a decision must be made whether
to accept any keys that are pressed.

A simple way to handle debouncing would be to maintain a counter value for each of the sixteen

switches. Every time State 4 is reached and the key is pressed, the counter is incremented. If the
key is not pressed, the counter is decremented. When the counter reaches a certain value, the
keypress is registered. To prevent a held-down key from repeating (which typically is allowed on
computer keyboards but not on keypads), the counter must be allowed to decrement back to zero
(by releasing the key) before that key may be registered again.

Because we have the state of all 16 keys in a single register, there is a simpler, less memory-
intensive solution. The application will maintain a single counter value (held in LC[0]) which will
initially be set to a debounce constant. This counter is decremented each time the bit pattern
matches the pattern read on the previous pass (in A[14]).

State4:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab low four bits only
 or A[13]

 cmp A[15]
 jump E, State4_End ; Ignore the last debounced pattern

 cmp A[14]
 jump E, State4_Match ; Match against pattern from last keypad read

 move LC[0], #DEBOUNCE
 move A[14], Acc ; Reset current bit array

To prevent keys from repeating, once a bit pattern has been static long enough to be accepted, a
different bit pattern (which includes the idle state where no keys are depressed) must be accepted
before the first bit pattern can be accepted again.

Handling Simultaneous Keypresses
It is possible for more than one key to be pressed at once. The debouncing code will ensure that if a
second key is pressed right after the first, the debounce interval will start over, but the interval will be
short enough in practice that this will not be an issue.

Once a bit pattern has been accepted, the action for each depressed-key bit may be taken by
rotating all 16 bits into the carry bit, one at a time using the accumulator and checking each in turn.
The code below responds only to the first depressed key, but this could be changed easily enough.

State4_Match:
 djnz LC[0], State4_End
 move A[15], Acc ; Reset last debounced pattern

 rrc
 jump NC, State4_KeyA
 rrc
 jump NC, State4_KeyB
 rrc
 jump NC, State4_KeyC
 rrc
 jump NC, State4_KeyD

 rrc
 jump NC, State4_Key3
 rrc
 jump NC, State4_Key6
 rrc
 jump NC, State4_Key9

 rrc
 jump NC, State4_KeyPound
 rrc
 jump NC, State4_Key2
 rrc
 jump NC, State4_Key5
 rrc
 jump NC, State4_Key8
 rrc
 jump NC, State4_Key0

 rrc
 jump NC, State4_Key1
 rrc
 jump NC, State4_Key4
 rrc
 jump NC, State4_Key7
 rrc
 jump NC, State4_KeyStar

 jump State4_End

Interfacing to the LCD Display
The LCD display included with the MAXQ2000 evaluation kit has segments defined as shown in
Figure 5.

Figure 5. LCD Segment Memory Mapping

To use the LCD display, the LCD controller must first be initialized to static drive mode and enabled.

InitializeLCD:
 move LCRA, #03E0h ; xxx0001111100000
 ; 00 - DUTY : Static
 ; 0111 - FRM : Frame freq
 ; 1 - LCCS : HFClk / 128
 ; 1 - LRIG : Ground VADJ
 ; 00000 - LRA : RADJ = max

 move LCFG, #0F3h ; 1111xx11
 ; 1111 - PCF : All segments enabled
 ; 1 - OPM : Normal operation
 ; 1 - DPE : Display enabled

 move LCD0, #00h ; Clear all segments
 move LCD1, #00h
 move LCD2, #00h
 move LCD3, #00h
 move LCD4, #00h
 ret

Once this has been done, characters may be written to the display by setting segments
appropriately. The display is wired to the LCD segment lines of the MAXQ2000 so that the
segments map into memory the same for each of the four 7-segment characters. As shown in the
mapping diagram above (Figure 5), the characters are written (from right to left) by setting the
LCD0, LCD1, LCD2 and LCD3 display memory registers.

; dGFEDCBA
LCD_CHAR_0 equ 00111111b
LCD_CHAR_1 equ 00000110b
LCD_CHAR_2 equ 01011011b
LCD_CHAR_3 equ 01001111b

LCD_CHAR_4 equ 01100110b
LCD_CHAR_5 equ 01101101b
LCD_CHAR_6 equ 01111101b
LCD_CHAR_7 equ 00000111b
LCD_CHAR_8 equ 01111111b
LCD_CHAR_9 equ 01101111b
LCD_CHAR_A equ 01110111b
LCD_CHAR_B equ 01111100b
LCD_CHAR_C equ 00111001b
LCD_CHAR_D equ 01011110b

State4_Key0:
 move Acc, #LCD_CHAR_0
 jump State4_Shift

State4_Key1:
 move Acc, #LCD_CHAR_1
 jump State4_Shift

State4_Key2:
 move Acc, #LCD_CHAR_2
 jump State4_Shift

State4_Key3:
 move Acc, #LCD_CHAR_3
 jump State4_Shift

State4_Key4:
 move Acc, #LCD_CHAR_4
 jump State4_Shift

State4_Key5:
 move Acc, #LCD_CHAR_5
 jump State4_Shift

State4_Key6:
 move Acc, #LCD_CHAR_6
 jump State4_Shift

State4_Key7:
 move Acc, #LCD_CHAR_7
 jump State4_Shift

State4_Key8:
 move Acc, #LCD_CHAR_8
 jump State4_Shift

State4_Key9:

 move Acc, #LCD_CHAR_9
 jump State4_Shift

State4_KeyA:
 move Acc, #LCD_CHAR_A
 jump State4_Shift

State4_KeyB:
 move Acc, #LCD_CHAR_B
 jump State4_Shift

State4_KeyC:
 move Acc, #LCD_CHAR_C
 jump State4_Shift

State4_KeyD:
 move Acc, #LCD_CHAR_D
 jump State4_Shift

Editing the PIN
When any of the alphanumeric keys are pressed, the corresponding character is loaded into the
rightmost character on the LCD display. All existing characters are shifted one place left.

State4_KeyStar:
 move LCD0, LCD1
 move LCD1, LCD2
 move LCD2, LCD3
 move LCD3, #0
 jump State4_End

State4_Shift:
 move LCD3, LCD2
 move LCD2, LCD1
 move LCD1, LCD0
 move LCD0, Acc

State4_End:
 move PD6, #010h ; Set up values for next state
 move PD7, #000h

 move T2V0, #RELOAD ; Set reload value
 move T2CNB0.1, #0 ; Clear interrupt flags
 move T2CNB0.3, #0
 move IV, #State1

 pop Acc
 pop PSF

 reti

The 'star' key is connected in this application to a delete/backspace function. Pressing the star key
shifts all characters one place to the right and erases the leftmost character from the display.

Contrast Adjustment
The pound key performs one additional function for demonstration purposes. Pressing it adjusts the
contrast of the LCD display, a simple function performed by incrementing the RADJ bits in the LCRA
register.

State4_KeyPound:
 move Acc, LCRA
 or #0FFE0h ; clear low five bits
 move A[13], Acc ; save version with bits cleared

 move Acc, LCRA
 and #0001Fh ; get low five bits only
 add #1 ; increment
 and #0001Fh ; mask out any carry to sixth bit
 or A[13] ; OR in the rest of the bits
 move LCRA, Acc ; change contrast

 jump State4_End

Conclusion
The MAXQ2000 interfaces easily and directly to LCD displays by means of its dedicated LCD
controller peripheral. Multiplexed key pads can be read in a straightforward manner using the
flexible port pin configuration provided by the MAXQ2000. An interrupt-driven state machine allows
all keys in the matrix to be scanned and debounced behind the scenes of the main application with
minimal effect on processor overhead.

More Information

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAXQ2000&ln=en

